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Abstract: Convolutional neural networks (CNNs) are commonly used in glaucoma detection.
Due to the various data distribution shift, however, a well-behaved model may be plummeting in
performance when deployed in a new environment. On the other hand, the most straightforward
method, data collection, is costly and even unrealistic in practice. To address these challenges,
we propose a new method named data augmentation-based (DA) feature alignment (DAFA) to
improve the out-of-distribution (OOD) generalization with a single dataset, which is based on
the principle of feature alignment to learn the invariant features and eliminate the effect of data
distribution shifts. DAFA creates two views of a sample by data augmentation and performs the
feature alignment between that augmented views through latent feature recalibration and semantic
representation alignment. Latent feature recalibration is normalizing the middle features to the
same distribution by instance normalization (IN) layers. Semantic representation alignment is
conducted by minimizing the Topk NT-Xent loss and the maximum mean discrepancy (MMD),
which maximize the semantic agreement across augmented views from individual and population
levels. Furthermore, a benchmark is established with seven glaucoma detection datasets and a
new metric named mean of clean area under curve (mcAUC) for a comprehensive evaluation of
the model performance. Experimental results of five-fold cross-validation demonstrate that DAFA
can consistently and significantly improve the out-of-distribution generalization (up to +16.3%
mcAUC) regardless of the training data, network architectures, and augmentation policies and
outperform lots of state-of-the-art methods.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In recent years, the convolutional neural networks have outperformed human experts across
a plethora of applications [1,2], and have been a popular method for glaucoma detection
[3–5]. However, models performing well under the independent and identically distributed
assumptions are not enough in real clinical implementation. CNNs are highly vulnerable to
data distribution shifts in new deployment environments, which are inevitable due to the various
imaging equipment, the different operating procedures, and the variation in annotation protocols
[6,7]. A common solution to address the data distribution shifts is collecting more data, but it is
expensive, time-consuming, and even impractical, especially in clinical scenarios. Therefore, it
is desirable to train the model with the data from a certain distribution and make it robust to the
unforeseen data distribution shifts between deployment environments.
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Most previous studies in the field of medical imaging analysis improved the CNNs robustness
using multiple datasets collected from various sites. For example, Liu et al. [8] enhanced prostate
segmentation by multi-site-guided knowledge transfer. Bateson et al. [9] trained the segmentation
networks with the constraint of domain-invariant prior knowledge (e.g., the size or shape of
segmentation regions). Chen et al. [10] proposed an unsupervised domain adaptation framework
that aims to align the source data and the target data both in the image and the feature perspectives.
The main idea of the abovementioned methods is to dig the shared information across different
datasets and extracting universal representations that robust to the data distribution shifts. Despite
the promising performance of these methods, the requirement for multiple datasets hinders their
real-world application.

On the other hand, there are many feasible methods under the setting of single dataset in
natural image analysis [11–21]. For example, Tang et al. [21] designed two normalization
techniques, namely SelfNorm and CrossNorm. The former recalibrates the channel-wise statistics
in an attention manner, while the latter exchanges the statistics between the middle features.
Hendrycks et al. [16] developed a data augmentation technique called AugMix that incorporates
multiple augmented images as one image in the MixUp manner [14]. However, the effectiveness
of methods developed on natural images is unknown on medical images, considering their
special characterizations such as fine-grained classes, large intra-class variations, small inter-class
variations, few samples, etc.

In this study, we propose a novel method called DAFA to improve the out-of-distribution
generalization with a single dataset for glaucoma detection in fundus images. The DAFA roots
from the hypothesis in feature alignment (FA) methods [22–25] that robust representations should
share a same feature space regardless of the data distribution shifts. Accordingly, we aim to learn
a robust feature via feature alignment between two different distributions that are simulated by
generating sample variants with stochastic data augmentation. Specifically, we use the instance
normalization layers without parameters [26] to recalibrate the distribution of middle features.
In the meantime, we maximize the identity agreement between the latent representations of
the same sample by minimize the Topk NT-Xent loss and the maximum mean discrepancy
between two batch representations under different augmented views. This mechanism can learn
a view-agnostic representation (i.e., robust to distribution shifts) effectively. Thus, the learnt
decision-boundary in feature space could be consistent across the various test data.

Our contributions are summarized as follows:

• We propose the DAFA method to improve the OOD generalization with a single dataset in
glaucoma detection. Through a novel feature alignment strategy, robust features can be
learned to handle the data distribution shifts.

• To comprehensively and reliably evaluate the model robustness, we propose a new evaluation
metric, i.e., mean of clean area under curve (mcAUC) based on seven glaucoma detection
datasets. This metric provides a simulation of real applications and a comprehensive OOD
generalization evaluation without the inherent dataset bias [20].

• Extensive experimental results demonstrate that our method consistently and substantially
improves the OOD generalization performance regardless of training data, the model
architecture, and augmentation policies and significantly outperforms most existing OOD
generalization methods.

2. Related work

A straightforward solution to improve the OOD generalization performance is to collect some
data from the target domain and re-training the model in a domain adaptation [22] or transfer
learning manner [27]. However, it is unfeasible when the target data are inaccessible. Fortunately,
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domain generalization (DG) [22–25,28] can be applied in the cases where multi-source data
exist. Its primary aim of DG is minimizing the representation mismatch between domains and
maximizing the separability of data. For instance, Motiian et al. [23] proposed a semantic
alignment loss and a separation loss to achieve this goal. Carlucci et al. [28] captured the
sharing knowledge crossing the domains by solving a jigsaw puzzle. However, as aforementioned,
collecting multi-sources data is usually as impractical as collecting target domain data, especially
in clinical practice due to high cost, sensitive information protection, data scarcity, etc.

To avoid the issues of data collection, several methods have been proposed to improve the OOD
generalization with a single dataset. These methods can be mainly divided into two categories as
follows: 1) data-based methods and 2) model-based methods.

The data-based methods address the problem through data augmentation or data pre-processing.
It is a common sense that traditional data augmentations (e.g., translation, rotation, scaling,
flipping, etc.) can improve the model robustness. Several advanced techniques including
automatic augmentations [13], mixed samples augmentations [14–16], adversarial examples
augmentation [17], and style transfer augmentation [18] also were demonstrated the same property.
Besides, a proper data pre-processing can greatly eliminate the distribution shifts. For example,
N4BiasFieldCorrection [29] is a conventional routine for MR images analysis. Standardizing
samples with Contrast Limited Adaptive Histogram Equalization (CLAHE) can improve the
classification of corrupted images [20].

On the contrary, the model-based methods focus on designing special network architectures to
reduce the impacts of distribution shifts. For example, Pan et al. proposed the IBN-Net [11] which
integrates instance normalization and batch normalization as the building blocks, and applied
it to cross-domain generalization. Zhang [12] made the CNNs shift-invariant by combining
low-pass filtering with anti-alias. Paul et al. [30] demonstrated the surprising robustness of the
Vision Transformer (ViT).

In contrast, the DAFA method is inspired by DG and incorporates the advantage of both
data-based and model-based methods. DAFA can fully leverage the potential of a single dataset
which may capture only a narrow slice of the entire distribution of real data. It is more feasible for
the scenarios where the target data is unforeseeable and the multi-source datasets are non-existent.

3. Methods

Given a set of N samples (X, Y) = {(x0, y0), (x1, y1), . . . , (xN−1, yN−1)} which are drawn from
training distribution Ptrain(X, Y), the problem is find the optimal model F ∗

θ which can generalize
best on test distribution Ptest(X, Y). It can be described as:

F ∗
θ = arg min

fθ
EX,Y∼Ptest [L (fθ (X), Y)] , (1)

where L (fθ (X), Y) is the loss function for the model optimization.
In real world applications, the independent and identically distributed assumption barely holds,

namely Ptrain(X, Y) ≠ Ptest(X, Y). The source of training data and test data may be sourced from
the different environments ϵ . Here, we denote the training data and the test data as (Xϵ , Yϵ ) ∼ Pϵ

and (Xεi , Yεi ) ∼ Pεi respectively, where the test environment εi is infinite and unforeseeable.
The optimal model F ∗

θ under this context is:

F ∗
θ = arg min

fθ

∑︂
i
EX,Y∼Pεi [L (fθ (X), Y)] . (2)

Here, we decompose this optimal model F ∗ as F ∗ = g ◦ f where f : X → R is a representation
learning function and g : R → Y is a classifier. Previous work [22–25] has demonstrated that
a invariant representation R elicits a invariant prediction for classifier g. Thus, the goal of our
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method is learning a invariant representation R which not be changed with data distribution shifts.
The formulation is:

min
f ,g
E(x,y)∼Pϵ L(g(f (x)), y) + λℓreg, (3)

where ℓreg denotes the regularization term which is performed as feature alignment between
augmented views in our method, and λ is the tradeoff parameter.

Figure 1 shows the main structure of DAFA. Specifically, given a mini-batch X of n samples,
the augmentation policy T and T

′ stochastically transforms it into two different augmented
views (denotes by v and v′), generating the two sets of variants X̂ and X̄. Then, both sets are
fed into a specific CNN backbone f (·) to extract the respective representations, namely R̂ and R̄,
which are finally used to predict their labels ŷ or ȳ via a classifier g(·). The cross-entropy loss
LCE for glaucoma detection will supervise this prediction process. Meanwhile, the Multi-layer
Perceptron (MLP) h(·) maps the representations to two semantic embeddings Ê and Ē, aiming to
maximize the agreement between the representations through the Topk NT-Xent loss LCon and
the Maximum Mean Discrepancy loss LMMD [31]. More details of our method are described in
the following sections.

Fig. 1. Overview of DAFA. Given a mini-batch X of n samples, the augmentation policies
T and T

′ stochastically transforms it into view v and v
′ , respectively. A CNN backbone

f (·) extracts the representations R̂ and R̄ from the augmented data X̂ and X̄ respectively.
Subsequently, a neural network g(·) predicts the respective label ŷ or ȳ for X̂ and X̄ according
to these representations. Meanwhile, another neural network h(·) maps these representations
to semantic embeddings Ê and Ē. LCon and LMMD can maximize the agreement between the
semantic embeddings from individual and population levels. LCE denotes the cross-entropy
loss for glaucoma detection. The dotted line indicates that this module only works during
the training phase.

3.1. Augmented views

The data augmentation policy T and T
′ should apply content preserving transformations such as

cropping, resizing, mirroring, color jittering, and color dropping on the input samples X to maintain
the task-relevant information [32]. Meanwhile, it should minimize the mutual information between
different views as well as possible to help the model capture more generic knowledge. In our
preliminary experiments, we found that the composition of multiple augmentation operations
and random color distortion could considerably benefit the OOD generalization on glaucoma
detection. Note that the hyperparameters for cropping operation should be carefully set to
preserve most of the main pathological area (e.g., optic cup and disc, or its surrounding blood
vessel and optic nerve area) for the meaningful glaucoma detection. After the augmentations, we
can promote data diversity and create various augmented views stochastically.
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3.2. Latent features recalibration

Regardless of which backbone network f (·) (e.g., ResNet50 [33], ResNeXt50 [34], and
DenseNet121 [35]) is applied, we replace the batch normalization (BN) [36] with instance
normalization [26] to realize the latent features recalibration.

Given a feature F ∈ RN×C×H×W , the standard IN performs the normalization as follows:

F̂ = γ
(F − µ)

σ
− β, (4)

where µ and σ represent the mean and standard deviation along the spatial dimension of each
channel (i.e., H×W) , and γ and β are learnable parameters for scale and shift, respectively. Here,
we remove the γ and β in Eq. (4), thus the IN layers not only eliminate instance-specific style
discrepancy, but also recalibrate the feature of each channel to the same Gaussian distribution
N(0, 1) and prevent the outputs from being dominated by some specific channels [37]. Besides,
IN can avoid the statistics inconsistent at training and testing time, because IN uses the batch
statistics instead of the running estimates [38]. In conclusion, IN ensure both high OOD
generalization and discrimination capability of the CNN models.

3.3. Semantic representation alignment

The classifier g : Rc → R2 is a fully connected layer to make a prediction for the input sample
according to the element r ∈ Rc of representations R̂ or R̄. Multi-layer Perceptron h : Rc → R128,
also called the projection head, is designed for the semantic representation alignment task.
Here, we denote the element of Ê or Ē as e. Using h (·) to project the representation r as the
semantic embedding e can eliminate the semantic discrepancy between augmented views and
avoid learning the task-irrelevant feature.

Given a set Ê ∪ Ē = {ei | i ∈ I} where I ≡ {0, 1, · · · , 2n − 1}, we let j(i) be the index of the
another semantic embedding derived from the same sample xi. ei and ej(i) are the normalized
projection of xi under two different augmented views. We define the pair

(︁
ei, ej(i)

)︁
as positive pair

and (ei, ek) with k ∈ I\{i, j(i)} as negative pairs. The Topk NT-Xent loss LCon only computed
across positive pairs set A(i) is defined as follows:

LCon =
1
2n

∑︂
i∈I
ℓi = −

1
2n

∑︂
i∈I

log
exp(ei · ej(i)/τ)∑︁

a∈A(i) exp(ei · ea/τ)
, (5)

where loss ℓi is the loss for the positive pair
(︁
ei, ej(i)

)︁
; the samples similarity is conduct by

the inner product, namely the cosine similarity; τ denotes a temperature parameter; and the
set A(i) ≡ {a ∈ Topk(i, I,K)| a ≠ i} where Topk(i, I,K) returns the indexes of K most
similar semantic embeddings of ei. The aim of ℓi is to maximize the agreement between
two semantic embeddings of the same sample (i.e., maximizing the numerator in Eq. (5),
ei · ej(i) → 1) and minimizing that in negative pairs (i.e., minimizing the denominator in Eq. (5),
ei · ea → 0). Thereby, more similar negative pairs or less similar positive pairs implies harder to
optimize and the challenge for Topk NT-Xent loss LCon will increase as the batch size n grows.
Compared to the NT-Xent loss [32], replacing the denominator indexes set Ā(i) ≡ {a ∈ I\i} with
A(i) ≡ {a ∈ Topk(i, I,K)| a ≠ i} can directly increase the contribution of hard negatives and
decrease that of easy negatives.

With the Topk NT-Xent loss LCon, the model will project the variants of a sample to the same
semantic point according to their own identity discriminative information, which effectively
eliminates the effect of transformations or perturbations (i.e., data distribution shifts) in individual
level.

MMD loss is widely used in domain adaptation [39] and domain generalization [22,23], and
provides a criterion for estimating the distance between distributions without the requirement of
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the intermediate density estimation. The definition of LMMD is:

LMMD = |
1
n

n−1∑︂
i=0
ϕ (êi) −

1
n

n−1∑︂
i=0
ϕ (ēi) |

2
H

, (6)

where H represents a Reproducing Kernel Hilbert Space (RKHS) with Gaussian kernel k
(︁
e, e′ )︁

=

exp(− 1
b ∥ e − e′

∥
2
2) and ϕ : R128 → H maps the features to RKHS. Minimizing the LMMD

between different views is helpful to incorporate the invariance to semantic embeddings in
population level.

3.4. Object function

The overall object function Loverall is defined as

Loverall = αLCE + βLCon + γLMMD, (7)

where cross-entropy loss LCE =
1
2n

∑︁2n−1
i=0 yi · log g (ri) assesses the glaucoma detection with the

ground-truth y, and LCon and LMMD align the semantic embeddings in different views at the
individual and population levels. In our experiments, the hyperparameters α, β, and γ in Loverall
are both empirically set to 1.0 and the bandwidth b in Gaussian kernel k

(︁
e, e′ )︁ of LMMD is set to

median pairwise squared distances on training data [39].

4. Experiments

4.1. Datasets

Seven datasets are included in our benchmark as follows: LAG [5], ODIR [42], ORIGA−light

[43], REFUGE [44], RIMONE-r2 [45], BY, and ZR. The details of each dataset are summarized
in the Table 1. Two private datasets, i.e., BY and ZR, are collected from Peking University Third
Hospital and the Second Affiliated Hospital of Zhejiang University, respectively, and labeled
by qualified glaucoma specialists. Before the experiments, the images are resized according to
their content scale and their values are normalized to zero mean and unit variance. As shown in
Fig. 2(a), the data heterogeneity on appearance and contrast apparently exists across the seven
datasets. Figure 2(b) visualizes the features extracted by ResNeXt-101 32x32d WSL [41] using
t-SNE. It can be noted that ORIGA−light and RIMONE are far apart from the other five datasets
and the REFUGE aggregates in a small region. In additional, these datasets collected from
related but distinct domains can also support other research such as Domain Generalization,
Multi-site Learning, Incremental Learning, etc.

Table 1. Details of the datasets in our benchmark.

Dataset Images (pos/neg) Camera Resolution

LAG [5] 4854 (1711/3143) Zeiss, Canon, and Topcon 500 × 500

ODIR [42] 3430 (325/3105) Zeiss, Canon, and Kowa 599 × 639 to 2847 × 4248

ORIGA−light [43] 650 (168/482) unknown 1995 × 2087 to 2047 × 2597

REFUGE [44] 400 (40/360) Zeiss Visucam 500 2056 × 2124

RIMONE-r2 [45] 455 (255/200) Nidek AFC210 290 × 290 to 1375 × 1654

BY 4388 (873/3515) Canon CR-2 AF 1584 × 1260 to 2303 × 2142

ZR 1839 (971/868) Topcon TRC-NW8 2014 × 1667 to 2135 × 2713
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Fig. 2. (a) Visualization of samples in our benchmark. The glaucoma samples and normal
samples are marked as red boxes and green boxes, respectively. (b) Visualizing the samples
using t-SNE [40]. The high-dimensional features extracted by ResNeXt-101 32x32d WSL
[41] are reduced their dimension by t-SNE. (c) Cross-validation results. Columns denote the
source dataset, and rows denote the target datasets (report in cAUC).

4.2. Implementation details

In this paper, all experiments are conducted on two NVIDIA GeForce GTX 2080Ti with PyTorch
implementation. Due to the data size and balanced categories, we use LAG, BY, or ZR as the
source dataset, and the remaining datasets as the target datasets. The model with the maximum
the area under curve (AUC) on the validation set (i.e., a split of LAG, BY, or ZR) is adopted
to evaluate its performance on the target datasets. The default settings for training is: SGD
optimizer with Nesterov momentum of 0.9; weight decay of 1e − 5; batch size of 64; epochs
of 400. The learning rate increases linearly from 0 to 3e − 3 at the first 5 epochs and linearly
decays to 0 following a cosine decay schedule. The automatic mixed precision training strategy
is adopted for training speedup. We use different popular CNNs as the feature extractor f (·), a
fully-connected layer as the g(·), and a 2-layer MLP as h(·) with weight matrixes W1 ∈ R2048×1024

and W2 ∈ R1024×128 and RELU activation function. The data augmentation T and T
′ during the

training phase is same as [46]. We adopt the above settings for all experiments unless specified
otherwise.

4.3. Evaluation of the proposed model

In this section, we first compare our approach with the Baseline (i.e., the original ResNet50 [33],
ResNeXt50 [34], or DenseNet121 [35]) using various training data, networks, and augmentation
policies. And then, we investigate its effectiveness in learning the features robust to distribution
shifts. Finally, we conduct the comparisons with the state-of-the-art OOD generalization methods.

4.3.1. Evaluation metric

We denote the seven datasets in our benchmark as D. In order to comprehensively assess
the performance of the models, one dataset is used as the source dataset and the remaining
six datasets are used as the target datasets. The source dataset d̃ randomly split into five
subsets {d̃0, d̃1, . . . , d̃4} to conduct the 5-fold cross-evaluation. For each iteration of the 5-fold
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cross-evaluation, one split d̃s is used as the validation set to select the best model ms and remained
four subsets are used for training. Finally, the target datasets D\{d̃} will be used to evaluate the
OOD generalization performance of model ms.

In this benchmark, we employ AUC in 5-fold cross-evaluation due to its comprehensiveness
and stability. We aggregate the results on the multiple target datasets as:

mcAUC =
1
N

∑︂
d∈D\{d̃}

cAUCd, (8)

where N = |D| − 1, d ∈ D\{d̃} denotes the target dataset, and clean area under curve (cAUC) is
a standardized measures based on AUC. Since different target datasets pose different challenges,
the inherent difficulties of target dataset should be considered before the aggregation and the
AUCs need to be standardized as cAUC. Here, we train a ResNet50 model with all datasets D
as the DeepAll. DeepAll serves as a strong baseline for domain generalization [24,25], and its
performance implies the generalization difficulties of target datasets. Thereby, the cAUC of target
dataset d is standardized as follows:

cAUCd =

∑︁S
s=1 AUCms

d∑︁S
s=1 AUCDeepAlls

d

, (9)

where S = |{d̃0, d̃1, . . . , d̃4}|, s indicates which split of d̃ or D used as the validation set, and∑︁S
s=1 AUCDeepAlls

d indicates how difficult the target dataset d. In conclusion, our benchmark
successfully avoids the bias of a single target dataset and provides a fair comparison for OOD
generalization.

Taking the advantage of standardized metric, we demonstrate the impact of distribution shift
between datasets in the Fig. 2(c). Three main phenomena can be observed as follows: 1) The
cAUC plummets on out-of-distribution data. 2) Its value fluctuates on these target datasets. 3) The
model trained by BY shows the best performance. Thus, our benchmark indeed simulates the real
deployment scenarios. And, two important conclusions can be drawn that the result on a single
dataset is unreliable and the training data distribution is a key factor to OOD generalization.

4.3.2. Comparison with baseline settings

We evaluate the model performance across seven datasets (see the Table 2). Our method
significantly outperforms the Baseline on all seven datasets, and approaches the DeepAll on
REFUGE, RIMONE-r2, and BY, and even surpasses it on LAG and ODIR.

Table 2. Experimental results of ResNet50 on seven datasets (report in AUC). DeepAll is the
ResNet50 trained with all seven datasets D. Thus, it can be regarded as the upper bound for

performance comparison. Baseline and DAFA are the ResNet50 trained with LAG. See Data File 1
[47] for detailed values of each fold.

DeepAll Baseline DAFA

LAG 0.980±0.002 0.978±0.004 0.981±0.003

ODIR 0.764±0.023 0.638±0.017 0.830±0.016

ORIGA−light 0.926±0.067 0.724±0.007 0.773±0.013

REFUGE 0.988±0.001 0.761±0.037 0.942±0.012

RIMONE-r2 0.842±0.036 0.683±0.029 0.820±0.038

BY 0.913±0.030 0.795±0.011 0.858±0.016

ZR 0.990±0.010 0.683±0.051 0.818±0.018

Table 3 shows the summarized results of ResNet50 trained by LAG, BY, or ZR. It demonstrates
that DAFA consistently outperforms the Baseline. Specially, training the ResNet50 on ZR shows

https://doi.org/10.6084/m9.figshare.19294316
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the largest improvement (+16.3% mcAUC). Besides, we find that the increase of mcAUC on BY
is marginal. We conjecture that BY has a good sample diversity (see the Fig. 2(b) and (c)), thus
the improvement of its OOD generalization is much harder than that of LAG and ZR.

Table 3. Experimental results on LAG, BY and ZR with ResNet50 (report in mcAUC). See Data File
2 [48] for detailed values of each fold.

Training data Baseline DAFA

LAG 0.792±0.008 0.918±0.012
BY 0.873±0.013 0.876±0.020
ZR 0.718±0.017 0.835±0.010

It should be noted that the superiority of our method is not limited by networks or augmentation
policies. Table 4 shows the generality of DAFA on different networks. There is 0.126, 0.079, and
0.073 increase of mcAUC for ResNet50, ResNeXt50, and DenseNet121 respectively. Besides, the
results of different augmentation policies (e.g., BarlowTwins-style augmentation [46], SimCLR-
style augmentation [32] , and Fast autoaugmentation [13]) is shown in Table 5, where our method
also consistently prevails the Baseline.

Table 4. Experimental results on LAG with popular networks (report in mcAUC). See Data File 2
[48] for detailed values of each fold.

Networks Baseline DAFA

ResNet50 [33] 0.792±0.008 0.918±0.012
ResNeXt50 [34] 0.827±0.013 0.906±0.010
DenseNet121 [35] 0.861±0.016 0.934±0.005

Table 5. Experimental results of ResNet50 on LAG with various augmentation policies (report in
mcAUC). See Data File 2 [48] for detailed values of each fold.

Augmentations Baseline DAFA

BarlowTwins [46] 0.792±0.008 0.918±0.012
SimCLR [32] 0.800±0.019 0.896±0.004
Fast autoaugment [13] 0.752±0.011 0.867±0.032

In addition to the above quantitative comparisons, the Fig. 3 provides the qualitative comparison
between the Baseline and DAFA in the class activation maps (CAM) [49]. It is consistently
observed on all samples from target datasets that the pathological areas of glaucoma (e.g., optic
cup and disc, or its surrounding blood vessel and optic nerve area.) are correctly detected by
DAFA. In contrast, the located pathological area of Baseline is scattered and inaccurate.

Noteworthy, we plot the AUC curves of different networks in Fig. 4. It is obvious that the
DAFA provides a more stable AUC curve, and speed up the model convergence.

4.3.3. Analysis of Learned Features

To verify the effectiveness of the DAFA more directly, we apply the symmetric Kullback-Leibler
(KL) divergence [11] and the proxy A-distance (PAD) [51] to measure the middle feature
discrepancy between the source dataset d̃s and the target datasets d ∈ D\{d̃}.

We average the output of layer l of the backbone f (·) across the spatial dimensions and denote
the features for dataset d as Fd. We assume that each channel of Fd has a Gaussian distribution,
i.e., Fi

d ∼ N(µi
d, (σi

d)
2). Thus, the symmetric KL divergence of the channel i between source

https://doi.org/10.6084/m9.figshare.19294313
https://doi.org/10.6084/m9.figshare.19294313
https://doi.org/10.6084/m9.figshare.19294313
https://doi.org/10.6084/m9.figshare.19294313
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Fig. 3. Visualization results of ResNet50 models. All samples presented here are glaucoma.
The red box denotes samples of the validation set, and the magenta square indicates the failed
cases. The successful cases are correctly captured in the pathological areas of glaucoma
(e.g., optic cup and disc, or its surrounding blood vessel and optic nerve area.). On the
contrary, the heatmaps of failed cases are scattered.

Fig. 4. The AUC curves of different networks trained with LAG. The horizontal axis is the
epochs and the vertical axis is the AUC on the validation set. The highest AUC is marked as
a star. See Data File 3 [50] for the underlying values.
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dataset d̃s and target dataset d ∈ D\{d̃} is:
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The final feature divergence of layer l is aggregated across N target datasets and C channels as
follows:

Dl =
1
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Figure 5 demonstrates the feature divergence of 17 layers in ResNet50. Apparently, DAFA
greatly reduces the symmetric KL divergence of middle layers. An interesting find is that the
Baseline of BY has lower feature divergence than that of LAG and ZR (especially in the deep
layers), which explains why the improvement on BY is much harder than LAG and ZR.

Fig. 5. Feature divergence of middle features in ResNet50. The feature divergence, namely
symmetric KL divergence, is computed between the source dataset and the target datasets.
See Data File 4 [52] for the underlying values.

We also reveal the discrepancy between the representations R̂ and R̄ in PAD. PAD is widely
utilized to estimate the similarity of the source and the target representations in Domain Adaption
[51]. A low PAD implies that the distribution shifts could be neglect in the feature space. As
shown in the Table 6, DAFA significantly reduces the PAD.

Table 6. PAD of ResNet50 trained with LAG, BY, or ZR.

Training data Baseline DAFA

LAG 1.936 1.842
BY 1.942 1.873
ZR 1.855 1.795

In summary, a robust feature is learned by DAFA and the impacts of distribution shifts are
significantly reduced in feature space. These results give us an intuition of DAFA that it indeed
improves the OOD generalization through the feature alignment.

4.3.4. Comparison with State-of-art Methods

We implemented several state-of-the-art OOD generalization methods for comparison, including
Anti-aliased ResNet50 [12] which makes model shift-invariant by integrating low-pass filtering to
anti-alias, IBN-ResNet50-a and IBN-ResNet50-b [11] which address the domain or appearance
variation by a well-designed IBN block, AugMix [16] which improves model robustness to
unforeseen distribution shifts by mixing randomly augmented samples, AdvProp [17] which
improves the image recognition model by reducing the overfitting of adversarial examples with

https://doi.org/10.6084/m9.figshare.19297751
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separate auxiliary batch normalization layers, Shape-ResNet [18] which learns a shape-based
representation by stylized samples, and Pertrained ResNeXt101 [53] which obtains a robust
model by fine-tuning the pre-trained models.

In addition, we also report the results of several popular CNNs and domain generalization
methods as a reference. Specifically, DenseNet121 [35] is a strong baseline for model robustness.
EfficientNet-B0 [54] and ResNeSt50 [55] achieve the state-of-the-art performance on ImageNet
dataset. The domain generalization methods including JigenDG [28], EISNet [56], and ERDG
[57] both attempt to extract the domain-invariant features through the additional regularization
(i.e., jigsaw puzzles, momentum metric learning, or conditional entropy maximizing).

As listed in Table 7, the models trained without specific designed data augmentations (i.e.,
ResNet50, DenseNet121, EfficientNet-B0, and ResNeSt50) show poor OOD generalization except
for the ResNeSt50. The model robustness methods, Anti-aliased ResNet50, IBN-ResNet50-a,
IBN-ResNet50-b, AugMix, AdvProp, and Shape-ResNet, can effectively improve the ResNet50,
especially the IBN-ResNet50-b. And, pretraining on massive data approximately 1 billion
images, even it is unrelated, could improve the model robustness significantly (i.e., Pretrained
ResNeXt101). Nonetheless, our method achieves the best performance with a small dataset (i.e.,
3386 images) and surpasses the above methods significantly . We conjecture that these methods
are developed in the natural images without considerations for the characteristics of medical
images. On the other hand, the domain generalization methods trained with the union of LAG,
BY, and ZR do not outperform our method. The mcAUC of JigenDG, EISNet, and ERDG [57]
are lower than our method by 0.041, 0.072, and 0.079, respectively.

Table 7. OOD Generalization performance of various methods trained on LAG. See Data File 5 [58]
for the detailed values of each fold.

Method mcAUC

DAFA 0.918±0.012

ResNet50 [33] 0.655±0.018

Anti-aliased ResNet50 [12] 0.712±0.024

IBN-ResNet50-a [11] 0.732±0.009

IBN-ResNet50-b [11] 0.792±0.010

AugMix [16] 0.700±0.016

AdvProp [17] 0.728±0.012

Shape-ResNet [18] 0.674±0.017

Pertrained ResNeXt101 [41] 0.918±0.021

DenseNet121 [35] 0.677±0.009

EfficientNet-B0 [54] 0.593±0.035

ResNeSt50 [55] 0.729±0.025

JigenDG [28] 0.877±0.021

EISNet [56] 0.846±0.018

ERDG [57] 0.839±0.019

Figure 6 provides the results on each target dataset. Notably, all methods do not perform well
on the RIMONE-r2 and ORIGA−light, because there are large content mismatches and distribution
gaps between the LAG and RIMONE-r2 or ORIGA−light (see Fig. 2(a) and (b)). Moverover, our
method (the green curve in Fig. 6) demonstrates its superiority on each target dataset.

https://doi.org/10.6084/m9.figshare.19297754
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Fig. 6. The detailed results of various methods trained on LAG (report in cAUC). The
highest cAUCs on every dataset are marked as a star. See Data File 5 [58] for the underlying
values.

4.3.5. Ablation Studies

In this section, we analyze the influence of hyperparameters K and τ and which components
crucially contribute to these improvements. All experiments in this section are conducted on the
ResNet50 trained by LAG.

Hyperparameters influence. We analyze the influence of Topk NT-Xent loss LCon using
different values of K in Topk(·, ·, ·). As shown in Fig. 7(a), setting the K to 40 brings the largest
gains. Then, we study which value of τ in LCon is the best. According to Fig. 7(b), τ = 2.0 is
better than the other values.

Fig. 7. Hyperparameters Tuning. The K (Left) and temperature parameter τ (Rignt) in
Topk NT-Xent loss LCon are adjusted according to the results of ResNet50 trained on the
LAG (report in cAUC). See Data File 6 [59] for the underlying values.

Network design. We study how the normalization layers in f (·) affects the OOD generalization.
We set the normalization layers to batch normalization, group normalization (GN) [38], or
instance normalization with the parameters α and β (INparam). Then, we report their results
in Table 8. Besides, we also report the result of removing the project head h(·). According to

https://doi.org/10.6084/m9.figshare.19297754
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Table 8, we can draw the following conclusions: 1) IN surpasses the common normalization
methods (i.e., BN and GN); 2) Recalibrating the feature distribution to N(0, 1) brings significant
gains (i.e, IN vs INparam); 3) Project head h(·) is good for learning a general feature.

Table 8. Ablation results on the ResNet50 trained on LAG.

Methods mcAUC

DAFA 0.918±0.012

w/ BN 0.885±0.018

w/ GN 0.911±0.013

w/ INparam 0.903±0.009

w/o h(·) 0.912±0.011

w/ Supervised Lcon 0.905±0.013

w/o Lcon 0.901±0.017

w/o Lmmd 0.898±0.015

Object function design. We also discuss the object function in Table 8. We define the positive
pair as two semantic embeddings of the same class in Supervised Lcon. Obviously, Lcon is better
than Supervised Lcon although the latter already outperforms the Baseline by 0.126 mcAUC.
Moreover, removing the object function LCon, or LMMD decreases the mcAUC by 0.017, and
0.020, respectively.

5. Discussion

Fundus images have a wide variation in appearance and contrast, even the images are acquired
from the same site (see Fig. 2(a)), due to the poor standardized data acquisition and individual
differences. Thereby, deploying the CNN models to new sites usually brings performance drops
(see Fig. 2(c)). Learning a robust glaucoma detection model is desirable in clinical applications.

In this paper, we propose a novel method called DAFA to improve the OOD generalization
of glaucoma detection. Compared with domain adaptation or domain generalization methods,
DAFA can fully exploit the potential of a single dataset and avoid the expensive, even infeasible
data collection and the tedious training process. In addition, it significantly outperforms most
existing methods that use a single dataset to improve OOD generalization and a lot of domain
generalization methods that apply multiple datasets (see Table 7). Thus, DAFA is well-suited
for the various real application scenarios. Experimental results demonstrate that our method
can improve the OOD generalization regardless of the training data distribution, the model
architecture, and the augmentation policies (see Table 3, Table 4, and Table 5). Another advantage
of DAFA is that it can speed up the model convergence and stabilize the training (see Fig. 4).

In the DAFA, the improvement for OOD generalization stems from the Feature Alignment.
Unlike the Domain Alignment [10,23], DAFA performs the feature alignment between two
augmented views instead of two source datasets. The Feature Alignment prompts the CNN
models to learn robust representations which are invariant regardless of the distribution shifts.
Hence, a generic decision boundary can be learned based on these robust representations. Figure 5
and Table 6 reveal that the discrepancy between the source dataset and the target dataset is
significantly reduced in the feature space, which demonstrates that the features are robust to
distribution shifts. The same conclusion also can be draw from Fig. 3. The CAM visualization
results demonstrate that DAFA correctly and consistently captures the pathological area.

Although the OOD generalization performance is improved, the limitation of our method still
exists. DAFA slightly hampers the performance on the identically distributed data (see Fig. 4).
In our future work, we plan to investigate the impact of different types of distribution shifts.
For example, the distribution shifts may be caused by equipment, annotations, or population.
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Focusing on a certain shift could give us a clear understanding of OOD generalization. Moreover,
feature normalization shows a promising improvement and brings negligible overheads (e.g.,
replacing the BN with IN or GN, IBN-ResNet50-a [11], and SelfNorm and CrossNorm [21]). It
is worth digging into this technique thoroughly.

6. Conclusions

In this paper, we aim to learn a robust model using a single dataset. We propose a novel method
called DAFA to enhance the OOD generalization in glaucoma detection on fundus images. This
method is derived from the feature alignment. Traditionally, feature alignment is performed
between two datasets, but we extend it to a single datasets with two augmented view. To evaluate
our method DAFA, we establish a reliable benchmark with seven datasets. Experimental results
on our benchmark demonstrate that DAFA significantly outperforms most state-of-the-art OOD
generalization methods.
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